II B.Tech - I Semester - Regular Examinations - FEBRUARY 2022

SIGNALS AND SYSTEMS
 (Common for ECE, EEE)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

UNIT - I

1. a) Define and sketch the following signals both in continuous and discrete time domains.
i) Impulse function
ii) Unit Step Signal
ii) Ramp Signal.
b) Determine whether the following systems are Linear, Time Invariant, Causal and Static or not?
i) $y(t)=x^{2}(t)$
ii) $y(n)=n x(n)$.
OR
2.

a) Sketch the signals
i) $y_{1}(t)=u(t-3)$
8 M
ii) $y_{2}(t)=u(t+3)$
iii) $y_{3}(t)=u(-t-3)$ and
iv) $y_{4}(t)=u(-t+3)$.
b) Find the even and odd parts of
i) $\mathrm{x}(\mathrm{t})=e^{5 t}$
ii) $\mathrm{x}(\mathrm{t})=5+3 \mathrm{t}+4 \mathrm{t}^{2}$.

UNIT - II

3. a) Determine whether the given systems are Stable or Unstable and Static or Dynamic?
i) $h(n)=(1 / 3)^{n} u(n)$
ii) $h(n)=n u(n)$.
b) State and Prove the Commutative, Distributive and Associative properties of Continuous Time LTI system.

OR
4. a) Perform the convolution of the signals
i) $\mathrm{x}(\mathrm{t})=5 \mathrm{u}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})=3 \mathrm{u}(\mathrm{t})$
ii) $\mathrm{x}(\mathrm{t})=e^{-5 t} \mathrm{u}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})=e^{-2 t} \mathrm{u}(\mathrm{t})$
b) Find out the Convolution of $x(n)=\{2,-1,3,2\}$ and $h(n)=\{1,-1,1,1\}$ using graphical method.

UNIT-III

5. a) Derive the expression for Trigonometric Fourier series 8 M coefficients.
b) Find out the exponential Fourier Series for

$$
\begin{aligned}
\mathrm{x}(\mathrm{t}) & =0 \text { for }-2<\mathrm{t}<-1 \\
& =\text { A for }-1<\mathrm{t}<1 \\
& =0 \text { for } 1<\mathrm{t}<2
\end{aligned}
$$

with fundamental period $\mathrm{T}=4$ sec.
OR
6. a) Find out the Fourier Transform of 6 M $\mathrm{x}(\mathrm{t})=e^{-a t} \cos \omega_{0} t \mathrm{u}(\mathrm{t})$
b) State and Prove any 4 properties of Fourier Transform. $\quad 8 \mathrm{M}$

UNIT - IV

7. a) State and prove time shifting and convolution
properties of DTFT.
b) Find the response of an LTI for input $\mathrm{x}(\mathrm{n})=\{1,2,3,1\} \quad 7 \mathrm{M}$ if $h(n)=\{1,2,1,-1\}$

OR
8. a) Determine Fourier Transform and plot Magnitude and Phase spectrum of $x(n)=1 / 3 ; 0 \leq n \leq 2$.
$=0$; elsewhere.
b) Find $x(n)$, if $X\left(e^{j \omega}\right)=\frac{1}{\left(1-0.5 e^{-j \omega}\right)\left(1-0.2 e^{-j \omega}\right)}$

UNIT - V

9. a) State and Prove i) Linearity ii) Differentiation in Time 8 M iii) Time Scaling and iv) Convolution in Time Properties of Laplace Transform.
b) Determine the Laplace Transform of

$$
\begin{aligned}
\mathrm{x}(\mathrm{t}) & =2 \mathrm{t} / \mathrm{T} ; 0 \leq t \leq T / 2 \\
& =(2-2 \mathrm{t}) / \mathrm{T} ; \mathrm{T} / 2 \leq t \leq T . \\
& \text { OR } .
\end{aligned}
$$

10. a) Determine Z Transform of $\mathrm{x}(\mathrm{n})=\mathrm{a}^{\mathrm{n}} \sin \left(\omega_{0} n\right) u(n)$. $\quad 7 \mathrm{M}$
b) Determine Inverse Z Transform of

$$
X(Z)=\frac{z\left(z^{2}-4 z+5\right)}{(z-1)(z-2)(z-3)} \text { for ROC }|z|<1 .
$$

