II B.Tech - I Semester – Regular Examinations - FEBRUARY 2022

SIGNALS AND SYSTEMS (Common for ECE, EEE)

Duration: 3 hours	Max. Marks: 70
Note: 1. This paper contains questions from 5 u	inits of Syllabus. Each unit carries
14 marks and have an internal choice of	of Questions.
2. All parts of Question must be answered	d in one place.

<u>UNIT – I</u>

1.	a)	Define and sketch the following signals both in	6 M			
		continuous and discrete time domains.				
		i) Impulse function ii) Unit Step Signal				
		ii) Ramp Signal.				
	b)	Determine whether the following systems are Linear,	8 M			
		Time Invariant, Causal and Static or not?				
		i) $y(t) = x^{2}(t)$ ii) $y(n) = n x(n)$.				
		OR				
2.	a)	Sketch the signals i) $y_1(t) = u(t-3)$	8 M			
		ii) $y_2(t) = u(t+3)$ iii) $y_3(t) = u(-t-3)$ and				
		iv) $y_4(t) = u(-t+3)$.				
	b)	Find the even and odd parts of	6 M			
		i) $x(t) = e^{5t}$ ii) $x(t) = 5 + 3t + 4t^2$.				
	<u>UNIT – II</u>					

3. a) Determine whether the given systems are Stable or 5 M Unstable and Static or Dynamic? i) $h(n) = (1/3)^n u(n)$ ii) h(n) = n u(n). Page 1 of 3

	b)	State and Prove the Commutative, Distributive and	9 M
		Associative properties of Continuous Time LTI system.	
		OR	
4.	a)	Perform the convolution of the signals	8 M
		i) $x(t) = 5 u(t)$ and $h(t) = 3 u(t)$	
		ii) $x(t) = e^{-5t}u(t)$ and $h(t) = e^{-2t}u(t)$	
	b)	Find out the Convolution of $x(n) = \{2,-1,3,2\}$ and	6 M
		$h(n) = \{1,-1,1,1\}$ using graphical method.	

UNIT-III

5.	a)	Derive the expression for Trigonometric Fourier series	8 M
		coefficients.	
	b)	Find out the exponential Fourier Series for	6 M
		x(t) = 0 for -2 < t < -1	
		= A for -1 < t < 1	
		= 0 for 1 < t < 2	
		with fundamental period T=4 sec.	
		OR	
6.	a)	Find out the Fourier Transform of	6 M
		$\mathbf{x}(\mathbf{t}) = e^{-at} \cos \omega_0 t \mathbf{u}(\mathbf{t})$	
	b)	State and Prove any 4 properties of Fourier Transform.	8 M
		$\underline{\mathbf{UNIT}} - \mathbf{IV}$	
7.	a)	State and prove time shifting and convolution	7 M
		properties of DTFT.	

b) Find the response of an LTI for input $x(n) = \{1,2,3,1\}$ 7 M if $h(n) = \{1,2,1,-1\}$

OR

8. a) Determine Fourier Transform and plot Magnitude and 7 M Phase spectrum of x(n) = 1/3; $0 \le n \le 2$.

b) Find x(n), if X(
$$e^{j\omega}$$
) = $\frac{1}{(1-0.5e^{-j\omega})(1-0.2e^{-j\omega})}$ 7 M

= 0: elsewhere.

$\underline{UNIT} - \underline{V}$

- 9. a) State and Prove i) Linearity ii) Differentiation in Time 8 M iii) Time Scaling and iv) Convolution in Time Properties of Laplace Transform.
 - b) Determine the Laplace Transform of 6 M $x(t) = 2t/T; 0 \le t \le T/2$ $= (2 - 2t)/T; T/2 \le t \le T$.

- 10. a) Determine Z Transform of $x(n) = a^n sin(\omega_0 n)u(n)$. 7 M
 - b) Determine Inverse Z Transform of 7 M

$$X(Z) = \frac{z(z^2 - 4z + 5)}{(z - 1)(z - 2)(z - 3)} \text{ for ROC } |z| < 1.$$